Maximum Ascending Subarray Sum

Given an array of positive integers nums, return the maximum possible sum of an ascending subarray in nums.

A subarray is defined as a contiguous sequence of numbers in an array.

A subarray [numsl, numsl+1, ..., numsr-1, numsr] is ascending if for all i where l <= i < rnums< numsi+1. Note that a subarray of size 1 is ascending.

Example 1:

Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.

Example 2:

Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.

Example 3:

Input: nums = [12,17,15,13,10,11,12]
Output: 33
Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.

Approach

C++

#include <bits/stdc++.h>
using namespace std;

int maxAscendingSum(vector<int&nums)
{

    int n = nums.size();

    int maxSum = INT_MIN;
    int sum = nums[0];
    for (int i = 1i < ni++)
    {
        if (nums[i] > nums[i - 1])
        {
            sum += nums[i];
        }
        else
        {
            maxSum = max(maxSumsum);
            sum = nums[i];
        }
    }
    maxSum = max(maxSumsum);

    return maxSum;
}

int main()
{
    vector<intnums = {10203051050};

    cout << maxAscendingSum(nums<< "\n";

    return 0;
}


No comments:

Post a Comment