Design Circular Queue

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Implementation the MyCircularQueue class:

  • MyCircularQueue(k) Initializes the object with the size of the queue to be k.
  • int Front() Gets the front item from the queue. If the queue is empty, return -1.
  • int Rear() Gets the last item from the queue. If the queue is empty, return -1.
  • boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
  • boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
  • boolean isEmpty() Checks whether the circular queue is empty or not.
  • boolean isFull() Checks whether the circular queue is full or not.

 

Example:

Input
["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]

Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear();     // return 3
myCircularQueue.isFull();   // return True
myCircularQueue.deQueue();  // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear();     // return 4

Approach:

C++

#include <bits/stdc++.h>
using namespace std;

class MyCircularQueue
{
public:
    vector<intv;
    int head;
    int tail;
    int size;

    MyCircularQueue(int k)
    {

        v.resize(k);
        head = -1;
        tail = -1;
        size = k;
    }
    queue<intq;

    bool enQueue(int value)
    {

        if (isFull())
            return false;
        if (isEmpty())
            head = 0;
        tail = (tail + 1) % size;
        v[tail] = value;
        return true;
    }

    bool deQueue()
    {
        if (isEmpty())
            return false;
        if (head == tail)
        {
            head = -1;
            tail = -1;
            return true;
        }
        head = (head + 1) % size;
        return true;
    }

    int Front()
    {

        if (isEmpty())
            return -1;
        return v[head];
    }

    int Rear()
    {

        if (isEmpty())
            return -1;
        return v[tail];
    }

    bool isEmpty()
    {

        if (head == -1)
            return true;
        return false;
    }

    bool isFull()
    {

        return ((tail + 1) % size) == head;
    }
};

int main()
{
    MyCircularQueue myCircularQueue(3);

    cout << "[";
    if (myCircularQueue.enQueue(1))
        cout << "true, ";
    else
        cout << "false, ";
    if (myCircularQueue.enQueue(2))
        cout << "true, ";
    else
        cout << "false, ";
    if (myCircularQueue.enQueue(3))
        cout << "true, ";
    else
        cout << "false, ";
    if (myCircularQueue.enQueue(4))
        cout << "true, ";
    else
        cout << "false, ";
    cout << myCircularQueue.Rear() << ", ";
    if (myCircularQueue.isFull())
        cout << "true, ";
    else
        cout << "false, ";
    if (myCircularQueue.deQueue())
        cout << "true, ";
    else
        cout << "false, ";
    if (myCircularQueue.enQueue(4))
        cout << "true, ";
    else
        cout << "false, ";
    cout << myCircularQueue.Rear();

    cout << "]";

    return 0;
}


No comments:

Post a Comment